Treatment Breakthroughs in Multiple Myeloma

Muzaffar H. Qazilbash

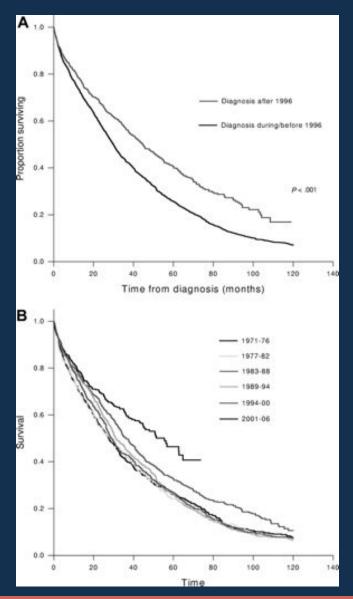
Timeline

- 1844: First documented case of myeloma (Solly et al. Med Chir Trans London)
- 1845: BJP was described
- 1895: Morphologic description of plasma cells
- 1928: First large series of myeloma patients
- 1939: Serum protein spike identified
- 1947: Urethane used for the Rx of myeloma (Alwall et al. Lancet)
- 1956: Kappa and lambda light chains identified
- 1975: Durie-Salmon staging system
- 2005: International Staging System
- 2000+: Cytogenetic and molecular classification
- 2011: Genome sequencing of myeloma cell (Chapman et al. Nature)

Treatment Timeline

- 1958: First report of successful use of Melphalan (Blokhin et al. Ann NY Acad Scie)
- 1962: First report of successful use of Corticosteroids (Maas RE Cancer Chemother Rep)
- 1969: Melphalan + Prednisone established as standard induction in a randomized trial (Alexanian R et al. JAMA 1969)
- 1982: First successful syngeneic transplantation for myeloma (Osserman EF, R Storb R. Acta Haematol)
- 1983: First high-dose melphalan (T McElwain, R Powles)
- 1999: First report of successful use of Thalidomide (Singhal S, Barlogie B et al.)
- 2002:First report of successful use of Bortezomib (Orlowski RZ et al.)
- 2002: First report of successful use of Lenalidomide (Richardson PG, Anderson KC)
- 2009: First report of successful use of Carfilzomib (O'Connor, Orlowski R. Clin Cancer Res)
- 2009: First report of successful use of Pomalidomide (Lacy M, Rajkumar SV. JCO)

blood


JOURNAL OF

THE AMERICAN

SOCIETY OF

HEMATOLOGY

Overall survival from diagnosis of multiple myelomas.

Kumar S K et al. Blood 2008;111:2516-2520

Improvement in Myeloma Outcome

- The unequivocal evidence that the outcome of myeloma has significantly improved within the last decade is mainly due to:
 - Optimal use of auto-HCT
 - Use of novel agents: thalidomide, lenalidomide and bortezomib
 - Improvements in supportive care
 - *Better understanding of disease biology and emergence of targeted therapies

Thalidomide

- Thalidomide was marketed as a sedative in the 1950s
- In 1961, it was discovered to be teratogenic, affecting 10,000 infants and was taken off the market
- In 1997, Dr. Barlogie started a trial due to its antiangiogenic properties in myeloma
- In 84 patients treated, response rate was 32% (Singhal S et al. NEJM 1999)

Lenalidomide

- An analog of thalidomide developed to enhance efficacy and to minimize toxicity
- Overall response rate (MR) with single agent lenalidomide was 71% in patients with relapsed or refractory myeloma (Richardson PG et al. Blood 2002)
- In an upfront trial at Mayo Clinic, lenalidomide + dexamethasone was associated with response in 31/34 (91%) newly diagnosed patients (Rajkumar SV et al. Blood 2005)
- It was approved by the FDA for myeloma in 2006

Bortezomib

- Inhibition of proteasome causes apoptosis, predominantly in the malignant and proliferating cells
- Robert Orlowski led the initial clinical trial in hematologic malignancies, where it showed striking anti-myeloma (9/9 patients) activity (Orlowski RZ et al. JCO 2002)
- It was approved by the FDA for myeloma in 2003

Putting it all together

- Advances in Induction Therapy
- Advances in Stem Cell Transplantation
- Advances in Post-transplant Consolidation and Maintenance
- Advances in Supportive Care
- Advances in Relapsed Disease

Induction Therapy for Transplant Eligible Patients: NCCN Category 1

- Bortezomib + Dexamethasone (Harrousseau J et al. JCO 2010)
 - BD vs. VAD (482 pts.)
 - CR/nCR: 14.8 vs. 6.5%
 - PFS: 36 vs. 29.7 months
 - Improved EFS and OS in patients with t(4;14). Avet-Loiseau H. JCO 2010
- Bortezomib + Doxorubicin + Dexamethasone (Sonneveld P et al. HOVON. ASH 2010*)
 - PAD vs. VAD
 - Superior ORR and PFS with PAD

Induction Therapy for Transplant Eligible Patients: NCCN Category 1

- Bortezomib + Thalidomide + Dexamethasone (*Rosinol L. PETHEMA. ASH 2010)
 - GIMEMA Trial . Cavo M et al. Lancet 2010;
 - VTD vs. TD (480 patients)
 - CR/nCR (31% vs. 11%)
- Lenalidomide + Dexamethasone. ()
 - SWOG Trial. Zonder J et al. SWOG. ASH 2007*;
 - LD vs. D
 - CR: 22.1% vs. 3.5% (study terminated)
 - ECOG. Rajkumar SV. ECOG. Lancet Oncology 2010
 - LD vs. Ld
 - ORR: 79% vs. 66%
 - 1-year OS: 87% vs. 96% (*trial stopped)

Induction Therapy for Transplant Ineligible Patients: NCCN Category 1

- Lenalidomide + Low-Dose Dexamethasone
 - (Zonder J et al. SWOG. ASH 2007*; Rajkumar SV.
 ECOG. Lancet Oncology 2010)
- Melphalan + Prednisone + Thalidomide
 - (Palumbo A et al. Lancet 2006; Facon T et al. Lancet 2007; Wijermans P et al. JCO 2010)
- Melphalan + Prednisone + Bortezomib
 - (San Miguel J et al. VISTA trial. NEJM 2008)
- Melphalan + Prednisone + Lenalidomide
 - (Palumbo A. NEJM 2012)

HDT With ASCT vs Conventional Chemotherapy

4 published trials compared conventional chemotherapy (CC)
 with HDT in newly diagnosed Durie-Salmon stage II/III MM

Study	Age (yr)	Tx	n	CR (%)	Median EFS (mo)	Median OS (mo)
Attal et al ¹ (IFM90)	<65	CC	100	5*	18*	44*
		HDT	100	22*	28*	57*
Fermand et al ² (MAG91)	55–65	CC	91	-	19*	50
		HDT	94	-	24*	55
Bladé et al ³ (PETHEMA)	<65	CC	83	11*	33	64
		HDT	81	30*	42	72
Child et al ⁴ (MRC7)	<65	CC	200	8*	20*	42*
		HDT	201	44*	32*	54*

*Significant P value

- Attal M et al. N Engl J Med. 1996;335:91
- 2. Fermand J et al. Blood. 1998;92:3131
- 3. Bladé J et al. H Blood 2005
- 4. Child JA et al. N Engl J Med. 2003;348:1875

Auto HCT Improves CR Rates When Used with Newer Agents

- Harousseau J et al. JCO 2010
 - 482 patients enrolled: Median F/U 32 months
 - Bortezomib + Dex + DCEP vs. VAD + DCEP
 - Post induction CR: 14.8 vs. 6.4%
 - Post auto HCT (1 or 2) CR: 35 vs. 18%
 - Median PFS: 36 vs. 29.7 months (p=0.06)
- Cavo M et al. Lancet 2010
 - 480 patients enrolled
 - Induction: VTD vs. TD x 3
 - Post induction CR: 31% vs. 11%
 - Tandem auto
 - Consolidation: VTD vs. TD x 2

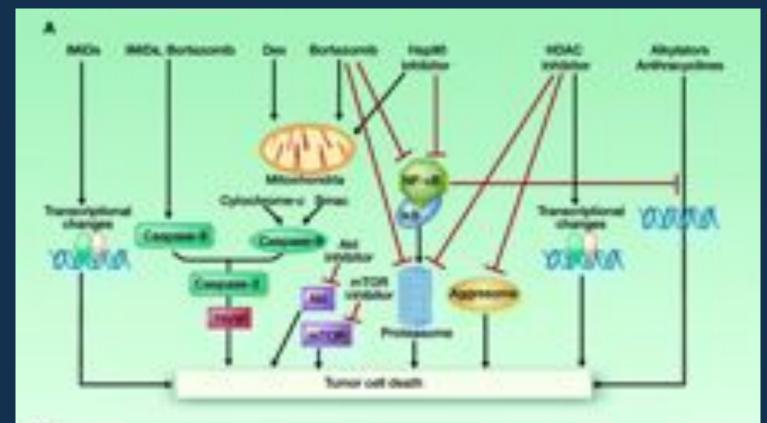
Maintenance Therapy: NCCN Category 1

- Thalidomide
 - (Attal M et al. Blood 2006; Spencer A et al. JCO 2009)
- Lenalidomide
 - (Attal M et al. NEJM 2012; McCarthy P et al. NEJM 2012)

Thalidomide Maintenance

- Thalidomide
 - Attal et al. *Blood 2006* (597 patients)
 - Observation vs. Pamidronate vs. Thalidomide
 - 3-year EFS: 38, 39 and 51%
 - 4-year OS: 77, 74 and 87%
 - Spencer et al. JCO 2009 (269 patients)
 - Prednisolone vs. Thalidomide + Prednisolone
 - 3-year PFS: 23 vs. 42%
 - 3-year OS: 75 vs. 86%
 - 1 trial (MRC IX) showed improvement in PFS but not OS
 - Morgan Gl et al. Blood 2012

Maintenance: Lenalidomide vs. Placebo


- Attal et al. IFM Trial. NEJM 2012
 - 614 patients
 - Median EFS: 40 vs. 23 months
- McCarthy et al. CALGB trial. NEJM 2012
 - 568 patients
 - Median TTP: 46 vs. 27 months
 - OS: p=0.03
- Lenalidomide is associated with:
 - neutropenia
 - *Increased second primary malignancies

Supportive Care

- Bisphosphonates
 - Reduces SREs
 - Morgan G. MRC Myeloma IX. Lancet Oncol.2011
 - Associated with improved survival in the MRC trial
 - Morgan G. MRC Myeloma IX. Blood.2012
- Vertebroplasty/Kyphoplasty
 - Pain control in vertebral compression and collapse
- Anti-microbials

Emerging Anti-Myeloma Therapies

- New Proteasome Inhibitors
 - Carfilzomib
 - Approved by the FDA in August 2012
 - MLN9708
 - Oral proteasome inhibitor
 - Promising single agent activity
- New IMiDs
 - Pomalidomide
 - Most potent IMiD
 - Active against revlimid and bortezomib-refractory patients
 - Myelosuppression is the main toxicity

Rationally Based Combination Therapies

- 1. Bornsonit; and High SG inhibitors.
- Bortsonnib and Doel.
- mits and NP1-0052 groteum
- Bortourniti and perfoure (Att Int)
- mits and Bot if emitotice
- Bortomest and just latery, interior
- only and the settl periods of the
- enth and Little SED (HDAC see
- 4. Bortournit and SAVA (HEAC) (HI)
- Borhosentii-and CCI-079 (w1000 int)

- Lanabolomies and mTOR emblure
- Lanabilismeds and Avti-CD40 antili
- wines. * Lanakdonide and Dook

 - Lanablamote and Hubbert2 (artiCS-1 at)
 Lanablamote and LBH 580 (HDAC art)
 - Lansisterate and participa (Ast ret).

 - Langkitsmide and Bevacounds
 - Langishmode and Nacimes

 - Lanakitumide and cariforanib
 Lanakitumide and NP 0050

 - Lampidomide and SAVA (HDAC HTS)

Langistancia and Barbacomb of Can.

Targeted Therapies

- HDAC Inhibitors: synergistic with proteasome inhibitors
 - Vorinostat
 - (Richardson PG et al. Leuk Lymphoma 2008)
 - Panobinostat
- mTOR Inhibitors
 - Everolimus:
 - Mahindra A et al. ASH 2010
 - Temsirolimus:
 - Ghobrial I et al. Lancet Oncol. 2011
- PI3 Kinase Pathway Inhibitor
 - Perifosine:
 - Richardson PG et al. JCO 2011

Immunotherapies

- Antibodies
 - Elotuzumab (Anti- CS1)
 - Siltuximab (Anti-IL6)
 - Anti-CD38 antibody
 - Anti KIR antibody (to neutralize their inhibitory effect on NK cells)
- Vaccines
 - Idiotype
 - Dendritic cell
- Cellular Therapy
 - Vaccine-primed , ex-vivo activated T lymphocytes
 - hTert/survivin: Rapoport A et al. Blood 2011

Future Directions

 Development of Personalized, risk-adapted therapy based on specific molecular or genetic pathways involved in an individual patient